Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.

Identifieur interne : 003056 ( Main/Exploration ); précédent : 003055; suivant : 003057

Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.

Auteurs : Silvano Fares [Italie] ; Elina Oksanen ; Mika L Nnenp ; Riitta Julkunen-Tiitto ; Francesco Loreto

Source :

RBID : pubmed:20407831

Descripteurs français

English descriptors

Abstract

Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.

DOI: 10.1007/s11120-010-9549-5
PubMed: 20407831


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="3">
<nlm:affiliation>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy. silvano.fares@ibaf.cnr.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
</author>
<author>
<name sortKey="L Nnenp, Mika" sort="L Nnenp, Mika" uniqKey="L Nnenp M" first="Mika" last="L Nnenp">Mika L Nnenp</name>
</author>
<author>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20407831</idno>
<idno type="pmid">20407831</idno>
<idno type="doi">10.1007/s11120-010-9549-5</idno>
<idno type="wicri:Area/Main/Corpus">003209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003209</idno>
<idno type="wicri:Area/Main/Curation">003209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003209</idno>
<idno type="wicri:Area/Main/Exploration">003209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="3">
<nlm:affiliation>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy. silvano.fares@ibaf.cnr.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
</author>
<author>
<name sortKey="L Nnenp, Mika" sort="L Nnenp, Mika" uniqKey="L Nnenp M" first="Mika" last="L Nnenp">Mika L Nnenp</name>
</author>
<author>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="eISSN">1573-5079</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Antioxidants (physiology)</term>
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Methanol (metabolism)</term>
<term>Ozone (pharmacology)</term>
<term>Pentanes (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stomata (drug effects)</term>
<term>Plant Stomata (metabolism)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (drug effects)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antioxydants (métabolisme)</term>
<term>Antioxydants (physiologie)</term>
<term>Butadiènes (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Méthanol (métabolisme)</term>
<term>Ozone (pharmacologie)</term>
<term>Pentanes (métabolisme)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Stomates de plante (effets des médicaments et des substances chimiques)</term>
<term>Stomates de plante (métabolisme)</term>
<term>Stomates de plante (physiologie)</term>
<term>Transpiration des plantes (effets des médicaments et des substances chimiques)</term>
<term>Transpiration des plantes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Butadienes</term>
<term>Carbon Dioxide</term>
<term>Hemiterpenes</term>
<term>Methanol</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Antioxidants</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Butadiènes</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Méthanol</term>
<term>Pentanes</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Antioxydants</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20407831</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5079</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.</ArticleTitle>
<Pagination>
<MedlinePgn>61-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11120-010-9549-5</ELocationID>
<Abstract>
<AbstractText>Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fares</LastName>
<ForeName>Silvano</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy. silvano.fares@ibaf.cnr.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oksanen</LastName>
<ForeName>Elina</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lännenpää</LastName>
<ForeName>Mika</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Julkunen-Tiitto</LastName>
<ForeName>Riitta</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loreto</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y4S76JWI15</RegistryNumber>
<NameOfSubstance UI="D000432">Methanol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000432" MajorTopicYN="N">Methanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20407831</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-010-9549-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Apr;9(4):180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):555-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Dec;223(1):20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 28;420(6914):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Apr;134(3):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2004 Sep;131(2):305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Oct;134(2):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18494857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Oct;157(10):2629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Apr;27(4):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11446300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9966-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Sep;10(9):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jan;29(1):53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jul;90(3):1163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;114(3):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11584635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jan;32(1):31-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Jan;214(3):484-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11855652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Apr 10;426(1):24-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9598971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 Aug 1;400(1-3):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18639315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91 Spec No:179-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Mar;114(3):450-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):540-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1996;20(7):933-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8743980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;113(3):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11428132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):44-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):144-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Sep;29(9):1820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Dec;134(4):559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;115(3):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2003 Dec;103(12):4941-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14664637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Mar;9(2):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16865657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 6;400(3):271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9009212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Dec;31(12):1882-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Dec;28(12):1761-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Apr;24(4):361-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Nov;156(1):11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18243452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Feb;130(3):380-390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1150-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Apr;146(3):640-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 16;448(7155):791-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
<name sortKey="L Nnenp, Mika" sort="L Nnenp, Mika" uniqKey="L Nnenp M" first="Mika" last="L Nnenp">Mika L Nnenp</name>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
</noCountry>
<country name="Italie">
<region name="Latium">
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003056 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003056 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20407831
   |texte=   Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20407831" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020